Functional Equations

Functions can be any. Very any and very ugly. They do not have to be linear or polynomial. Functional equations are equations where the unknown is a function.

Main method of solving functional equations is to substitute some values and plug it in equation, even if it would not be used in solution, for example: x = 0, x = y, x = f(y) etc. Sometimes it is beneficial to calculate the function is some set point for example f(0).

Problem 1. (Substitutions) Find every function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that satisfies the following equation:

$$2f(x) + f(1-x) = 3x$$

Problem 2. (More Substitutions) Find every function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that for any $x, y \in \mathbb{R}$ satisfy the following condition (four different problems)

1. f(x + y) = f(x) - f(y)

2.
$$f(x + y) = f(f(x)) + y$$

3.
$$xf(x) + yf(y) = (x + y)f(x)f(y)$$

4.
$$f(y)f(x) - xy = f(x) + f(y) - 1$$

Problem 3. (Functions on Reals) Function $f : \mathbb{R} \in \mathbb{R}$ satisfies the conditions:

1. f(x + y) = f(x) + f(y) for any $x, y \in \mathbb{R}$. 2. f(1) = 1.

Find $f(\frac{9}{32})$.

Problem 4. (Limitation) Find every function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is absolutely limited (which means that there exists such constant C_f that $\forall_{x \in \mathbb{R}} | f(x) \leq C_f$) and that satisfies, for any numbers $x, y \in \mathbb{R}$ the equation: f(x + y) = f(x) + f(y). **Problem 5. (Ugly Domains)** Find every function $f : \mathbb{R} \setminus \{0, 1\} \longrightarrow \mathbb{R}$ that for any $x \in \mathbb{R} \setminus \{0, 1\}$ satisfies the following equation:

$$f(x) + f\left(\frac{x-1}{x}\right) = 1 + x$$

Problem 6. (Monotonicity) Find all monotonic functions $f : \mathbb{R} \longrightarrow \mathbb{R}$, that for all $x, y \in \mathbb{R}$ satisfies the equation:

$$f(f(x) - y) + f(x + y) = 0$$

Problem 7. For $x, y, z \in \mathbb{R}$ solve the following system of equations.

$$\begin{cases} x^{2} - (y + z + yz)x + (y + z)yz = 0\\ y^{2} - (z + x + zx)y + (z + x)zx = 0\\ z^{2} - (x + y + xy)z + (x + y)xy = 0 \end{cases}$$

Solutions

Here are solutions to (some of) the problems. Solution 1.

$$2f(x) + f(1-x) = 3x \implies f(x) = \frac{3x - f(1-x)}{2}$$

Now let's substitute y = 1 - x

$$f(y) = \frac{3y - f(1 - y)}{2} \implies f(1 - x) = \frac{3(1 - x) - f(x)}{2}$$

Now plugging the result of the equation into the first equation.

$$f(x) = \frac{3x - \frac{3(1-x) - f(x)}{2}}{2}$$

If we calculate this equation we can see that: f(x) = 3x - 1. Solution 2.1

For any two numbers $x, y \in \mathbb{R}$.

$$f(x + y) = f(y + x)$$

$$f(x) - f(y) = f(y) - f(x)$$

$$2f(x) = 2f(y)$$

$$f(x) = f(y)$$

$$\implies f \text{ is constant}$$

$$\implies f(x + y) = f(x) - f(y) = 0$$

From that we can see that for any number $k \in \mathbb{R}$, f(k) = 0.